已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1\)的离心率为\(e= \dfrac { \sqrt {3}}{2}\),右焦点\(F( \sqrt {3},0)\).
\((\)Ⅰ\()\)求椭圆\(C\)的方程;
\((\)Ⅱ\()\)若直线\(l\):\(y=kx+m(km < 0)\)与圆\(O\):\(x ^{2} +y ^{2} =b ^{2}\)相切,且与椭圆\(C\)交于\(M\),\(N\)两点,求\(MF+NF\)的最小值.