
如图,在平面直角坐标系\(xOy\)中,已知点\(T(1,t)(t < 0)\)到抛物线\(y^{2}=2px(p > 0)\)焦点的距离为\(2\).
\((1)\)求\(p\),\(t\)的值;
\((2)\)设\(A\),\(B\)是抛物线上异于\(T\)的两个不同点,过\(A\)作\(y\)轴的垂线,与直线\(TB\)交于点\(C\),过\(B\)作\(y\)轴的垂线,与直线\(TA\)交于点\(D\),过\(T\)作\(y\)轴的垂线,与直线\(AB\),\(CD\)分别交于点\(E\),\(F\).
求证:\(①\)直线\(CD\)的斜率为定值;
\(②T\)是线段\(EF\)的中点.