已知\(B _{1}\)、\(B _{2}\)是椭圆\( \dfrac {x^{2}}{a^{2}} + \dfrac {y^{2}}{b^{2}} =1(a > b > 0)\)短轴上的两个顶点,点\(P\)是椭圆上不同于短轴端点的任意一点,点\(Q\)与点\(P\)关于\(y\)轴对称,则下列四个命题中,其中正确的是______.
①直线\(PB _{1}\)与\(PB _{2}\)的斜率之积为定值\(- \dfrac {a^{2}}{b^{2}}\);
②\( \overrightarrow {PB_{1}} \boldsymbol{⋅} \overrightarrow {PB_{2}} > 0\);
③\(\triangle PB _{1} B _{2}\)的外接圆半径的最大值为\( \dfrac {a^{2}+b^{2}}{2a}\);
④直线\(PB _{1}\)与\(QB _{2}\)的交点\(M\)的轨迹为双曲线.