已知数列\(\left\{ {{a}_{n}} \right\}\)为等比数列,且\({{a}_{n+1}}-{{a}_{n}}=-{{\left( \dfrac{1}{2} \right)}^{n+1}}\).
\((1)\)求公比\(q\)和\({{a}_{3}}\)的值;
\((2)\)若\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),求证:\({{a}_{1}},-{{S}_{n}}+1,{{a}_{2n-1}}\)成等比数列.