
已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)过点\((1, \dfrac {3}{2})\)且离心率为\( \dfrac {1}{2}\).
\((1)\)求椭圆\(C\)的标准方程;
\((2)\)若\(A _{1}\),\(A _{2}\)分别为\(C\)的左、右顶点,\(G\)为直线\(x=1\)上的任意一点,直线\(GA _{1}\),\(GA _{2}\)分别与\(C\)相交于\(M\)、\(N\)两点,连接\(MN\),试证明直线\(MN\)过定点,并求出该定点的坐标.