若函数\(f(x+1)\)为偶函数,对任意\(x _{1}\),\(x _{2} ∈[1 , +∞)\)且\(x _{1} \neq x _{2}\),都有\((x _{2} -x _{1} )[f(x _{1} )-f(x _{2} )] > 0\),则有\((\:\:\:\:)\)
A. \(f( \dfrac {1}{3}) < f( \dfrac {3}{2}) < f( \dfrac {2}{3})\)
B. \(f( \dfrac {2}{3}) < f( \dfrac {3}{2}) < f( \dfrac {1}{3})\) C. \(f( \dfrac {2}{3}) < f( \dfrac {1}{3}) < f( \dfrac {3}{2})\) D. \(f( \dfrac {3}{2}) < f( \dfrac {2}{3}) < f( \dfrac {1}{3})\)