在直角坐标系\(xOy\)中,圆\(C\)的普通方程为\(x^{2}{+}y^{2}{-}4x{-}6y{+}12{=}0{.}\)在以坐标原点为极点,\(x\)轴正半轴为极轴的极坐标系中,直线\(l\)的极坐标方程为\(\rho\sin(\theta{+}\dfrac{\pi}{4}){=}\sqrt{2}\).
\((\)Ⅰ\()\)写出圆\(C\)的参数方程和直线\(l\)的直角坐标方程;
\((\)Ⅱ\()\)设直线\(l\)与\(x\)轴和\(y\)轴的交点分别为\(A\)、\(B\),\(P\)为圆\(C\)上的任意一点,求\(\overrightarrow{{PA}}{⋅}\overrightarrow{{PB}}\)的取值范围.