职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:选择题 题类:期末考试 难易度:难

    设函数\(g\left( x \right)={{e}^{x}}+3x-a(a\in R,e\)为自然对数的底数\()\),定义在\(R\)上的连续函数\(f\left( x \right)\)满足:\(f\left( -x \right)+f\left( x \right)={{x}^{2}}\),且当\(x < 0\)时,\(f{{{"}}}\left( x \right) < x\),若存在\({{x}_{0}}\in \{x|f\left( x \right)+2\geqslant f\left( 2-x \right)+2x\}\),使得\(g\left( g\left( {{x}_{0}} \right) \right)={{x}_{0}}\),则实数\(a\)的取值范围为\((\)   \()\)

    A. \(\left( -\infty ,\sqrt{e}+\dfrac{1}{2} \right]\) B. \(\left( -\infty ,e+2 \right]\) C. \(\left( -\infty ,e+\dfrac{1}{2} \right]\) D. \(\left( -\infty ,\sqrt{e}+2 \right] \)
  • 相关试卷