已知椭圆\(E: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\),长轴长为\(4\),\(P\)为椭圆\(E\)上一点,\(F\)为椭圆的右焦点,满足\(PF\)与\(x\)轴垂直,且\(|PF|= \dfrac {3}{2}\).
\((1)\)求椭圆\(E\)的方程;
\((2)\)已知\(Q\)为直线\(x=4\)上一点,直线\(QF\)与椭圆\(E\)依次交于\(A\),\(B\)两点\((\)按照\(Q\)、\(A\)、\(F\)、\(B\)的顺序\()\),证明:\( \dfrac {|QA|}{|QB|}= \dfrac {|FA|}{|FB|}\).