我们把按确定顺序排列的一列数称为数列\(.\)设数列\(A\):\(a_{1}\),\(a_{2}\),…,\(a_{n}\),\(B\):\(b_{1}\),\(b_{2}\),…,\(b_{n}.\)已知\(a_{i}\),\(b_{j}\in\{0,1\}(i=1,2,\)…,\(n\);\(j=1\),\(2\),…,\(n)\),定义\(n×n\)数表\(X(A,B)=\begin{pmatrix}x_{11}&x_{12}&…&x_{1n}\\ x_{21}&x_{22}&…&x_{2n}\\ ⋮&⋮&⋮&⋮\\ x_{n1}&x_{n2}&…&x_{nn}\end{pmatrix}\),其中\(x_{ij}=\begin{cases}{1,a_{i}=b_{j}}\\ {0,a_{i}\neq b_{j}}\end{cases}.\)
\((Ⅰ)\)若数列\(A\):\(1\),\(1\),\(1\),\(0\),\(B\):\(0\),\(1\),\(0\),\(0\),写出\(X(A,B)\);
\((Ⅱ)\)若\(A\),\(B\)是不同的数列,求证:\(n×n\)数表\(X(A,B)\)满足“\(x_{ij}=x_{ji}(i=1,2,\)…,\(n\);\(j=1\),\(2\),…,\(n\);\(i≠j)\)”的充分必要条件是“\(a_{k}+b_{k}=1(k=1,2,\)…,\(n)\)”;
\((Ⅲ)\)若数列\(A\)与\(B\)中的\(1\)共有\(n\)个,求证:\(n×n\)数表\(X(A,B)\)中\(1\)的个数的最大值.