已知圆\(C:(x- \sqrt {3})^{2}+y^{2}=16\),点\(G(- \sqrt {3},0)\),\(P\)是圆\(C\)上一动点,若线段\(PG\)的垂直平分线和\(CP\)相交于点\(M\).
\((1)\)求点\(M\)的轨迹方程\(E\).
\((2)\)已知直线\(l\):\(y=kx+m(m\neq 0)\)交曲线\(E\)于\(A\),\(B\)两点.
①若射线\(BO\)交椭圆\( \dfrac {x^{2}}{16}+ \dfrac {y^{2}}{4}=1\)于点\(Q\),求\(\triangle ABQ\)面积的最大值;
②若\(OA⊥OB\),\(OD\)垂直\(AB\)于点\(D\),求点\(D\)的轨迹方程.