已知如图\(1\),在\({\rm Rt}\triangle ABC\)中,\(∠ACB=30°\),\(∠ABC=90°\),\(D\)为\(AC\)中点,\(AE⊥BD\)于\(E\),延长\(AE\)交\(BC\)于\(F\),将\(\triangle ABD\)沿\(BD\)折起,使平面\(ABD⊥\)平面\(BCD\),如图\(2\)所示.

\((\)Ⅰ\()\)求证:\(AE⊥\)平面\(BCD\);
\((\)Ⅱ\()\)求二面角\(A-DC-B\)的余弦值;
\((\)Ⅲ\()\)求三棱锥\(B-AEF\)与四棱锥\(A-FEDC\)的体积的比\((\)只需写出结果,不要求过程\()\).