题型:解答题 题类:其他 难易度:中档
底面为菱形的直棱柱\(ABCD-{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\)中,\(E\),\(F\)分别为棱\({A}_{1}{B}_{1},{A}_{1}{D}_{1} \)的中点.
\((\)Ⅰ\()\)在图中作一个平面\(\alpha \),使得\(BD\subset \alpha \),且平面\(AEF/\!/\alpha .(\)不必给出证明过程,只要求作出\(\alpha \)与直棱柱\(ABCD-{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\)的截面\()\).
\((\)Ⅱ\()\)若\(AB=A{{A}_{1}}=2,\angle BAD={{60}^{0}}\),求点\(C\)到所作截面\(\alpha \)的距离.