已知抛物线\(C _{1}\):\(y ^{2} =2px(p > 0)\),圆\(C _{2}\):\((x-4) ^{2} +y ^{2} =4.\)抛物线\(C _{1}\)的焦点到其准线的距离恰好是圆\(C _{2}\)的半径.
\((1)\)求抛物线\(C _{1}\)的方程及其焦点坐标;
\((2)\)过抛物线\(C _{1}\)上一点\(Q(\)除原点外\()\)作抛物线\(C _{1}\)的切线,交\(y\)轴于点\(P.\)过点\(Q\)作圆\(C _{2}\)的两条切线,切点分别为\(M\)、\(N.\)若\(MN/\!/PQ\),求\(\triangle PMN\)的面积.