已知函数\(f(x)\)为\(R\)上的偶函数,对任意\(x_{1}\),\(x_{2}\in(-∞,0)\),均有\((x_{1}-x_{2})[f(x_{1})-f(x_{2})]< 0\)
成立,若\(a=f(\sqrt{2}),b=f(3^{\frac{1}{3}}),c=f(e^{\frac{1}{3}})\),则\(a\),\(b\),\(c\)的大小关系是\((\quad)\)
A. \(c< b< a\)
B. \(a< c< b\) C. \(a< b< c\) D. \(c< a< b\)