在直角坐标系\(xOy\)中,以坐标原点为极点,\(x\)轴非负半轴为极轴建立极坐标系,曲线\(C _{1}\)的极坐标方程为\(ρ=4\cos θ\),曲线\(C _{2}\)的参数方程为\(\left\{\begin{array}{l}x=1+ \dfrac{ \sqrt{2}}{2}t \\ y= \dfrac{ \sqrt{2}}{2}t\end{array}\right. (t\)为参数\()\).
\((1)\)求曲线\(C _{1}\)的直角坐标方程及曲线\(C _{2}\)的普通方程;
\((2)\)设点\(P\)的直角坐标为\((1 , 0)\),曲线\(C _{1}\)与曲线\(C _{2}\)交于\(A\)、\(B\)两点,求\(|PA|+|PB|\)的值.