已知函数\(f(x)\)是偶函数,且满足\(2f(x+2)-f(-x)=0\),当\(x∈(0,2]\)时,\(f(x)=e^{x}+ax(a > 1)\),当\(x∈(-4,-2]\)时,\(f(x)\)的最大值为\(4e^{2}+16\).
\((\)Ⅰ\()\)求实数\(a\)的值;
\((\)Ⅱ\()\)函数\(g(x)= \dfrac {4}{3}bx^{3}-4bx+2(b\neq 0)\),若对任意的\(x_{1}∈(1,2)\),总存在\(x_{2}∈(1,2)\),使不等式\(f(x_{1}) < g(x_{2})\)恒成立,求实数\(b\)的取值范围.