已知椭圆方程为\( \dfrac {x^{2}}{6}+ \dfrac {y^{2}}{3}=1\).
\((1)\)设椭圆的左右焦点分别为\(F _{1}\)、\(F _{2}\),点\(P\)在椭圆上运动,求\( \overrightarrow {PF_{1}}\cdot \overrightarrow {PF_{2}}\)的取值范围;
\((2)\)设直线\(l\)和圆\(x ^{2} +y ^{2} =2\)相切,和椭圆交于\(A\)、\(B\)两点,\(O\)为原点,线段\(OA\)、\(OB\)分别和圆\(x ^{2} +y ^{2} =2\)交于\(C\)、\(D\)两点,设\(ΔAOB\)、\(ΔCOD\)的面积分别为\(S _{1}\)、\(S _{2}\),求\( \dfrac {S_{1}}{S_{2}}\)的取值范围.