在等差数列\(\{a_{n}\}\)中,\(a_{1}=3\),其前\(n\)项和为\(S_{n}\),各项均为正数的等比数列\(\{b_{n}\}\)中,\(b_{1}=1\),且满足\(b_{3}=S_{2}\),\(a_{1}+a_{2}+b_{1}=10.\)
\((Ⅰ)\)求数列\(\{a_{n}\}\)与\(\{b_{n}\}\)的通项公式;
\((Ⅱ)\)若数列\(\{\dfrac{1}{S_{n}}\}\)的前\(n\)项和为\(T_{n}\),证明:\(T_{n}< \dfrac {2}{3}.\)