已知函数\(f\left ( { x } \right )=\left \{ \begin{array}{l} \begin{array} {} \left ( { x+6 } \right ) ^ { 2 } ,-7\leqslant x < -5 \\ f(x-2),x\geqslant -5 \\ \end{array} \end{array} \right.\),若函数\(g\left ( { x } \right )=f\left ( { x } \right )-\left | { k\left ( { x+1 } \right ) } \right |\)有\(13\)个零点,则实数\(k\)的取值范围为\((\) \()\)
A. \(\left ( { \dfrac { 1 } { 8 },\dfrac { 1 } { 6 } } \right )\)
B. \(\left [ { \dfrac { 1 } { 8 },\dfrac { 1 } { 6 } } \right )\) C. \(\left ( { -\dfrac { 1 } { 6 },-\dfrac { 1 } { 8 } } \right ]\cup \left [ { \dfrac { 1 } { 8 },\dfrac { 1 } { 6 } } \right )\) D. \(\left ( { -\dfrac { 1 } { 6 },-\dfrac { 1 } { 8 } } \right )\cup \left ( { \dfrac { 1 } { 8 },\dfrac { 1 } { 6 } } \right )\)