题型:解答题 题类:其他 难易度:较难
已知数列\(\{a_{n}\}\)与\(\{b_{n}\}\)的前\(n\)项和分别为\(A_{n}\)和\(B_{n}\),且对任意\(n∈N^{*}\),\(a_{n+1}-a_{n}=2(b_{n+1}-b_{n})\)恒成立.
\((1)\) 若\(A_{n}=n^{2}\),\(b_{1}=2\),求\(B_{n};\)
\((2)\) 若对任意\(n∈N^{*}\),都有\(a_{n}=B_{n}\)及\(\dfrac{b_{2}}{a_{1}a_{2}}+\dfrac{b_{3}}{a_{2}a_{3}}+\dfrac{b_{4}}{a_{3}a_{4}}+…+\dfrac{b_{n{+}1}}{a_{n}a_{n{+}1}} < \dfrac{1}{3}\)成立,求正实数\(b_{1}\)的取值范围.