已知\(\{a_{n}\}\)是等差数列,\(a_{2}=4\),\(S_{5}=35\),且\(a_{1}\),\(a_{k}(k\in N^{*})\),\(a_{6}\)是等比数列\(\{b_{n}\}\)的前三项.
\((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
\((2)\)数列\(c_{n}=\begin{cases}{a_{n},n\text{为奇数}}\\ {\sqrt[4]{b_{n}},n\text{为偶数}}\end{cases}\),求数列\(\{c_{n}\}\)的前\(20\)项的和.