已知数列\(\{a _{n} \}\)的各项均为非零实数,其前\(n\)项和为\(S _{n}\),且\( \dfrac {S_{n}}{S_{n+1}}= \dfrac {a_{n}}{a_{n+2}}\).
\((1)\)若\(S _{3} =3\),求\(a _{3}\)的值;
\((2)\)若\(a _{2021} =2021a _{1}\),求证:数列\(\{a _{n} \}\)是等差数列;
\((3)\)若\(a _{1} =1\),\(a _{2} =2\),是否存在实数\(λ\),使得\(| 2^{a_{n}}-2^{a_{m}} |\leqslant λ|a _{n} ^{2} -a _{m} ^{2} |\)对任意正整数\(m\),\(n\)恒成立,若存在,求实数\(λ\)的取值范围,若不存在,说明理由.