已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(2S_{n}=n^{2}+n (n∈N ^{*} )\),数列\(\{b _{n} \}\)为等比数列,且\(b _{2} =a _{4}\),\(b _{1} +b _{3} =S _{4}\).
\((1)\)求\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
\((2)\)若数列\(\{b _{n} \}\)为递增数列,设\(c_{n}=(-1)^{n}a_{n}\cdot b_{n}\),求数列\(\{c _{n} \}\)的前\(n\)项和\(T _{n}\).