如图\(1\),\(ABCD\)是一个直角梯形,\(∠ABC=∠BAD=90\),\(E\)为\(BC\)边上一点,\(AE\)、\(BD\)相交于\(O\),\(AD=EC=3\),\(BE=1\),\(AB= \sqrt {3}.\)将\(\triangle ABE\)沿\(AE\)折起,使平面\(ABE⊥\)平面\(ADE\),连接\(BC\)、\(BD\),得到如图\(2\)所示的四棱锥\(B-AECD\).
\((\)Ⅰ\()\)求证:\(CD⊥\)平面\(BOD\);
\((\)Ⅱ\()\)求直线\(AB\)与面\(BCD\)所成角的余弦值.