对于自然数数组(a,b,c),如下定义该数组的极差:三个数的最大值与最小值的差.如果(a,b,c)的极差d≥1,可实施如下操作f:若a,b,c中最大的数唯一,则把最大数减2,其余两个数各增加1;若a,b,c中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为f1(a,b,c),其级差为d1.若d1≥1,则继续对f1(a,b,c)实施操作f,…,实施n次操作后的结果记为fn(a,b,c),其极差记为dn.例如:f1(1,3,3)=(3,2,2),f2(1,3,3)=(1,3,3).
(Ⅰ)若(a,b,c)=(1,3,14),求d1,d2和d2014的值;
(Ⅱ)已知(a,b,c)的极差为d且a<b<c,若n=1,2,3,…时,恒有dn=d,求d的所有可能取值;
(Ⅲ)若a,b,c是以4为公比的正整数等比数列中的任意三项,求证:存在n满足dn=0.