已知双曲线\(C\):\(\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1(a>0,b>0)\)的左、右焦点分别为\(F_{1}\)、\(F_{2}\),以\(F_{1}F_{2}\)为直径的圆与双曲线\(C\)在第一象限内的交点为\(P\),直线\(F_{1}P\)与\(y\)轴交点为\(Q\),\(O\)为坐标原点,\(|OQ|=\sqrt{\dfrac{a^{2}+b^{2}}{3}}\),则双曲线\(C\)的离心率为\((\quad)\)
A. \(2(\sqrt{3}-1)\)
B. \(\sqrt{3}+1\) C. \(\sqrt{2}\) D. \(\dfrac{3}{2}\sqrt{3}\)