设函数\(f(x)=\sin x+\sin (x+ \dfrac {π}{6})+\cos (x+ \dfrac {π}{3})\).
\((1)\)求数\(f(x)\)的最小正周期和对称轴方程.
\((2)\)锐角\(\triangle ABC\)的三个顶点\(A\),\(B\),\(C\)所对边分别为\(a\),\(b\),\(c\),若\(f(A)= \sqrt {2}\),\(a=2\),\(b= \sqrt {6}\),求\(∠C\)及边\(c\).
\((3)\)若\(\triangle ABC\)中,\(f(C)=1\),求\(2\cos ^{2}(A- \dfrac {π}{4})+ \sqrt {3}\sin (A-B)\)的取值范围.