非空集合\(A⊆R ^{+}\),满足\(∀x∈A\),总有\( \dfrac {1}{x} ∉A\),记集合\(T(A)=\{(x , y)|x∈A\),\(y∈A\),\( \dfrac {x}{y} ∈A\}\).
\((\)Ⅰ\()\)求证:\(∀x∈A\),\((x , x)∉T(A)\);
\((\)Ⅱ\()\)若\(T(A)\)中只有\(1\)个元素\((a , b)\),求证:\(a=b ^{2}\);
\((\)Ⅲ\()\)若集合\(A=\{a , b , c , d , e\}\),且\(a < b < c < d < e\),\(T(A)\)中恰有\(10\)个元素,求证:\(c ^{2} =ae\).