函数\(f(x)\)的定义域为\(A\),若\(x _{1}\),\(x _{2} ∈A\),且\(f(x _{1} )=f(x _{2} )\)时总有\(x _{1} =x _{2}\),则称\(f(x)\)为单函数.例如\(f(x)=2x+1(x∈R)\)是单函数,下列命题:
①函数\(f(x)=x ^{2} (x∈R)\)是单函数;
②函数\(f(x)=2 ^{x} (x∈R)\)是单函数,
③若\(f(x)\)为单函数,\(x _{1}\),\(x _{2} ∈A\)且\(x _{1} \neq x _{2}\),则\(f(x _{1} )\neq f(x _{2} )\);
④在定义域上具有单调性的函数一定是单函数
其中的真命题是______\((\)写出所有真命题的编号\()\)