职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
  • 题型:选择题 题类:期中考试 难易度:较难

    已知函数\(f(x)=x ^{2} \boldsymbol{⋅}\sin x\),各项均不相等的数列\(\{x _{n} \}\)满足\(|x _{i} |\leqslant \dfrac {π}{2} (i=1 , 2 , 3 , … , n).\)令\(F(n)=(x _{1} +x _{2} +…+x _{n} )\boldsymbol{⋅}[f(x _{1} )+f(x _{2} )+…+f(x _{n} )](n∈N ^{*} ).\)给出下列三个命题:
    \((1)\)存在不少于\(3\)项的数列\(\{x _{n} \}\),使得\(F(n)=0\);
    \((2)\)若数列\(\{x _{n} \}\)的通项公式为\(x_{n}=(- \dfrac {1}{2})^{n}(n∈N^{*})\),则\(F(2k) > 0\)对\(k∈N ^{*}\)恒成立;
    \((3)\)若数列\(\{x _{n} \}\)是等差数列,则\(F(n)\geqslant 0\)对\(n∈N ^{*}\)恒成立.
    其中真命题的序号是\((\:\:\:\:)\)
    A. \((1)(2)\) B. \((1)(3)\) C. \((2)(3)\) D. \((1)(2)(3)\)
  • 相关试卷