已知数列\(\{a_{n}\}\)是公差\(d\)不为\(0\)的等差数列,若\(\{a_{n}\}\)满足\(2a_{2}-a_{1}=6\),且\(a_{1}\),\(a_{2}\),\(a_{4}\)成等比数列.
\((1)\)求数列\(\{a_{n}\}\)的通项公式;
\((2)\)设数列\(\{b_{n}\}\)是各项均为正数的等比数列,且\(b_{2}=a_{1}\),\(b_{4}=a_{4}\),求数列\(\{a_{n}+b_{n}\}\)的前\(n\)项和\(T_{n}.\)