已知\(F _{1}\)、\(F _{2}\)分别是双曲线\(C\):\( \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}} =1(a > 0 , b > 0)\)的左右焦点,\(P\)为\(y\)轴上一点,\(Q\)为左支上一点,若\(( \overrightarrow {OP}+ \overrightarrow {OF_{2}})\cdot \overrightarrow {PF_{2}} =0\),且\(\triangle PF _{2} Q\)周长最小值为实轴长的\(3\)倍,则双曲线\(C\)的离心率为\((\:\:\:\:)\)
A. \(2\)
B. \( \sqrt {3}\) C. \( \sqrt {2}\) D. \(2 \sqrt {2}\)