已知椭圆\(C _{1}\):\( \dfrac {y^{2}}{a^{2}}+ \dfrac {x^{2}}{b^{2}}=1 (a > b > 0)\)的右顶点\(A(1 , 0)\),过\(C _{1}\)的焦点且垂直长轴的弦长为\(1\).
\((\)Ⅰ\()\)求椭圆\(C _{1}\)的方程;
\((\)Ⅱ\()\)设点\(P\)在抛物线\(C _{2}\):\(y=x ^{2} +h(h∈R)\)上,\(C _{2}\)在点\(P\)处的切线与\(C _{1}\)交于点\(M\),\(N.\)当线段\(AP\)的中点与\(MN\)的中点的横坐标相等时,求\(h\)的最小值.