题型:解答题 题类:期末考试 难易度:难
如图,在直角梯形\(ABCD\)中,\(AD/\!/BC\),\(\angle BAD={{90}^{\circ }}\),\(AB=BC=1\),\(AD=2\),\(E\)是\(AD\)的中点,\(O\)是\(AC\)与\(BE\)的交点,将\(ABE\)沿\(BE\)折起到\({{A}_{1}}BE\)的位置,如图\(2\).
图\(1\) 图\(2\)
\((1)\)证明:\(CD\bot \)平面\({{A}_{1}}OC\);
\((2)\)若平面\({{A}_{1}}BE\bot \)平面\(BCDE\),求\(BC\)与平面\(A_{1}CD\)所成的角.