已知直线\(y=2p\)与抛物线\(C\):\(x ^{2} =2py(p > 0)\)交于\(P\),\(Q\)两点,且\(|PQ|=8\).
\((1)\)求抛物线\(C\)的方程;
\((2)\)斜率为\(k(k\neq 0)\)的直线\(l\)经过\(C\)的焦点\(F\),\(l\)与\(C\)交于\(A\),\(B\)两点,线段\(AB\)的垂直平分线与\(y\)轴交于点\(D\),点\(E\)在\(y\)轴上,\( \dfrac {|AB|}{|DE|}\)为定值,求点\(E\)的坐标.