已知数列\(\{a _{n} \}\)前\(n\)项和为\(S _{n}\),且满足\(a_{1}=1,a_{n}=-S_{n}S_{n-1}(n\geqslant 2,n∈N^{*})\).
\((\)Ⅰ\()\)求数列\(\{a _{n} \}\)的通项公式;
\((\)Ⅱ\()\)记\(T _{n}\)为\(\{a _{n+1} S _{n} \}\)的前\(n\)项和,\(n∈N ^{*}\),证明:\(T_{n}\geqslant - \dfrac {3}{4}+ \dfrac {1}{2n(n+1)}\).