已知数列\(\{a_{n}\}\)前\(n\)项和为\(S_{n}\),若\(2S_{n}=(n+1)a_{n}\),且\(a_{1}>1\),\(a_{2}-1\),\(a_{4}-2\),\(a_{6}\)成等比数列.
\((1)\)求数列\(\{a_{n}\}\)的通项公式;
\((2)\)设\(b_{n}=\dfrac{4}{a_{n}a_{n+1}}+2^{-a_{n}}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n}< \dfrac {4}{3}.\)