已知数列\(\{{{a}_{n}}\}\)的各项为正数,其前\(n\)项和为\({{S}_{n}}\)满足\({{S}_{n}}={{(\dfrac{{{a}_{n}}+1}{2})}^{2}}\),设\({{b}_{n}}=10-{{a}_{n}}(n\in N)\).
\((1)\)求证:数列\(\{{{a}_{n}}\}\)是等差数列,并求\(\{{{a}_{n}}\}\)的通项公式;
\((2)\)设数列\(\{{{b}_{n}}\}\)的前\(n\)项和为\({{T}_{n}}\),求\({{T}_{n}}\)的最大值.