现有一堆物品,从上向下看,第一层有\(2\)个物品,第二层比第一层多\(1\)个,第三层比第二层多\(2\)个,第四层比第三层多\(4\)个,依次类推,若第\(n\)层物品个数为\(b_{n}\),则\(b_{n}=\)__________;若数列\(\{a_{n}\}\)满足\(a_{1}+2a_{2}+\)…\(+2^{n-1}\boldsymbol{⋅}a_{n}=n\boldsymbol{⋅}(b_{n+2}-1)\),则数列\(\{\dfrac{2^{n}\cdot a_{n}}{(n+1)b_{n}\cdot b_{n+1}}\}\)的前\(n\)项和\(S_{n}=\)__________.