已知双曲线\(C\):\( \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}} =1(a > 0 , b > 0)\)的右焦点为\(F\),点\(A\)为双曲线\(C\)左支上一点,\(AF\)与\(y\)轴交于点\(M\),且满足\(|OA|=|OF|=3| \overset{ -}{OM} |(\)其中\(O\)为坐标原点\()\),则该双曲线\(C\)的离心率为\((\:\:\:\:)\)
A. \( \dfrac { \sqrt {5}+1}{2}\)
B. \( \sqrt {5}+1\) C. \( \sqrt {10}\) D. \( \dfrac { \sqrt {10}}{2}\)