数列\(A_{n}\):\(a_{1}\),\(a_{2}\),…,\(a_{n}(n\geqslant 4)\)满足\(a_{1}=1\),\(a_{n}=m\),\(a_{k+1}-a_{k}=0\)或\(1(k=1,2,\)…,\(n-1)\)对任意\(i\),\(j\),都存在\(s\),\(t\),使得\(a_{i}+a_{j}=a_{s}+a_{t}\),其中\(i\),\(j\),\(s\),\(t\in\{1,2,\)…,\(n\}\)且两两不相等.
\((Ⅰ)\)若\(m=2\)时,写出下列三个数列中所有符合题目条件的数列序号;
①\(1\),\(1\),\(1\),\(2\),\(2\),\(2\);
②\(1\),\(1\),\(1\),\(1\),\(2\),\(2\),\(2\),\(2\);
③\(1\),\(1\),\(1\),\(1\),\(1\),\(2\),\(2\),\(2\),\(2\),\(2.\)
\((Ⅱ)\)记\(S=a_{1}+a_{2}+\)…\(+a_{n}\),若\(m=3\),证明:\(S\geqslant 20\);
\((Ⅲ)\)若\(m=1000\),求\(n\)的最小值.