已知定义在\(R\)上的奇函数\(f(x)\)在\((0,+∞)\)上单调递增,且\(f(1)=0\),若实数\(x\)满足\(xf(x-\dfrac{1}{2})\leqslant 0\),则\(x\)的取值范围是\((\quad)\)
A. \([-\dfrac{1}{2},0]∪[\dfrac{1}{2},\dfrac{3}{2}]\)
B. \([-\dfrac{1}{2},\dfrac{1}{2}]∪[\dfrac{3}{2},+∞)\) C. \([-\dfrac{1}{2},0]∪[\dfrac{1}{2},+∞)\) D. \([-\dfrac{3}{2},-\dfrac{1}{2}]∪[0,\dfrac{1}{2}]\)