已知数列\(\{a_{n}\}\)满足:\(a_{n+1}-a_{n}=d(n∈N^{*})\),前\(n\)项和记为\(S_{n}\),\(a_{1}=4\),\(S_{3}=21\).
\((1)\)求数列\(\{a\)\({\,\!}_{n}\)\(\}\)的通项公式;
\((2)\)设数列\(\{b\)\({\,\!}_{n}\)\(\}\)满足\(b\)\({\,\!}_{1}\)\(=\)\( \dfrac{16}{7}\),\(b\)\({\,\!}_{n+1}\)\(-b\)\({\,\!}_{n}\)\(=2^{a_{n}}\),求数列\(\{b\)\({\,\!}_{n}\)\(\}\)的通项公式.