记\(S _{n}\)是正项数列\(\{a _{n} \}\)的前\(n\)项和,\(a _{n} + \dfrac {3}{2}\)是\(6\)和\(S _{n} + \dfrac {1}{24}\)的等比中项,且\(a _{1} \neq 2\).
\((1)\)求\(\{a _{n} \}\)的通项公式;
\((2)\)若等比数列\(\{b _{n} \}\)的公比为\( \dfrac {1}{2}\),且\( \dfrac {1}{b_{1}}\),\( \dfrac {1}{b_{2}}\),\( \dfrac {1}{b_{3}} -2\)成等差数列,求数列\(\{a _{n} b _{n} \}\)的前\(n\)项和\(T _{n}\).