题型:解答题 题类:其他 难易度:较易
.已知各项均为正数的数列\(\{\)\(a_{n}\)\(\}\)的前\(n\)项和为\(S_{n}\),满足\(a_{n+1}^{2} \)\(=\)\(2\)\(S_{n}+n+\)\(4\),\(a\)\({\,\!}_{2}\)\(-\)\(1\),\(a\)\({\,\!}_{3}\),\(a\)\({\,\!}_{7}\)恰为等比数列\(\{\)\(b_{n}\)\(\}\)的前\(3\)项.
\((1)\)求数列\(\{\)\(a_{n}\)\(\}\),\(\{\)\(b_{n}\)\(\}\)的通项公式\(;\)
\((2)\)若\(c_{n}=\)\((\)\(-\)\(1)\)\({\,\!}^{n}\)\(\log _{2}\)\(b_{n}-\)\( \dfrac{1}{{a}_{n}{a}_{n+1}} \),求数列\(\{\)\(c_{n}\)\(\}\)的前\(n\)项和\(T_{n}\).