已知数列\(\{a_{n}\}\),\(b_{n}\)满足:\(a_{1}=\dfrac{1}{4},a_{n}+b_{n}=1,b_{n+1}=\dfrac{b_{n}}{1-a_{n}^{2}}.\)
\((1)\)求\(b_{1}\),\(b_{2}\),\(b_{3}\),\(b_{4}\);
\((2)\)求数列\(\{b_{n}\}\)的通项公式;
\((3)\)设\(S_{n}=a_{1}\boldsymbol{⋅}a_{2}+a_{2}\boldsymbol{⋅}a_{3}+\)…\(+a_{n}\boldsymbol{⋅}a_{n+1}\),若\(4a\boldsymbol{⋅}S_{n}>b_{n}\)对\(n\in N^{*}\)恒成立,求实数\(a\)的取值范围.