题型:解答题 题类:历年真题 难易度:中档
设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}=1\),\(S_{n}=na_{n}-3n(n-1)(n∈N^{*}).\)
\((1)\)求数列\(\{a_{n}\}\)的通项公式.\((2)\)是否存在正整数\(n\),使得\(\dfrac{{{S}_{1}}}{1}\)\(+\)\(\dfrac{{{S}_{2}}}{2}\)\(+\)\(\dfrac{{{S}_{3}}}{3}\)\(+…+\)\(\dfrac{{{S}_{n}}}{n}\)\(-\)\(\dfrac{3}{2}\)\((n-1)\)\({\,\!}^{2}\)\(=2018\)?若存在,求出\(n\)的值;若不存在,请说明理由.