已知双曲线\(C: \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a > 0,b > 0)\)的右焦点为\(F\),\(O\)为坐标原点,以\(OF\)为直径的圆与双曲线\(C\)的一条渐近线交于点\(O\)及点\(A( \dfrac {3}{2}, \dfrac { \sqrt {3}}{2})\),则双曲线\(C\)的方程为\((\:\:\:\:)\)
A. \(x^{2}- \dfrac {y^{2}}{3}=1\)
B. \( \dfrac {x^{2}}{2}- \dfrac {y^{2}}{6}=1\) C. \( \dfrac {x^{2}}{3}-y^{2}=1\) D. \( \dfrac {x^{2}}{6}- \dfrac {y^{2}}{2}=1\)