椭圆\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的短轴长与其焦距相等,且四个顶点构成面积为\(2 \sqrt {2}\)的菱形.
\((\)Ⅰ\()\)求椭圆的标准方程;
\((\)Ⅱ\()\)过点\(A(1 , 0)\)且斜率不为\(0\)的直线\(l\)与椭圆交于\(M\),\(N\)两点,记\(MN\)中点为\(B\),坐标原点为\(O\),直线\(BO\)交椭圆于\(P\),\(Q\)两点,当四边形\(MPNQ\)的面积为\( \dfrac {2 \sqrt {15}}{3}\)时,求直线\(l\)的方程.